Optimal Finite Homogeneous Sphere Approximation
نویسندگان
چکیده
The two-dimensional sphere can’t be approximated by finite homogeneous spaces. We describe the optimal approximation and its distance from sphere. compare this to achieved all Platonic Archimedean solids.
منابع مشابه
Deterministic approximation algorithms for sphere constrained homogeneous polynomial optimization problems
Due to their fundamental nature and numerous applications, sphere constrained polynomial optimization problems have received a lot of attention lately. In this paper, we consider three such problems: (i) maximizing a homogeneous polynomial over the sphere; (ii) maximizing a multilinear form over a Cartesian product of spheres; and (iii) maximizing a multiquadratic form over a Cartesian product ...
متن کاملOn Optimal Finite-Difference Approximation of PML
A technique derived from two related methods suggested earlier by some of the authors for optimization of finite-difference grids and absorbing boundary conditions is applied to discretization of perfectly matched layer (PML) absorbing boundary conditions for wave equations in Cartesian coordinates. We formulate simple sufficient conditions for optimality and implement them. It is found that th...
متن کاملOptimal order finite element approximation for a hyperbolic integro-differential equation
Semidiscrete finite element approximation of a hyperbolic type integro-differential equation is studied. The model problem is treated as the wave equation which is perturbed with a memory term. Stability estimates are obtained for a slightly more general problem. These, based on energy method, are used to prove optimal order a priori error estimates.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete and Computational Geometry
سال: 2022
ISSN: ['1432-0444', '0179-5376']
DOI: https://doi.org/10.1007/s00454-022-00377-w